
840 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 7, 1986

600
n

Fig. 2. External-Q as a function of the number of devices.
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Fig, 3, Functions of the number of devices. (a) Locking range with constant

gain. (b) Locking range with constant inJection power. (c) Locking gain with

constant injection power.

devices is changed. From (4), (5), and (7), it can be easily seen

that
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when the locking gain is kept constant by proportionately in-

creasing P, as the devices are increased in number.

Fig. 3 shows the variation of the locking range with an increase

in the number of devices for a multiple-device oscillator of

FD =1.41, U. =18.26 V, CD = 0.3 pF, CC=lOpF, n = 0.4, go = 3m

mho, and G, = O.Olm mho. Two cases are shown. One obtained

from (9) for a constant locking gain of 9.96 dB, which is the

locking gain of the oscillator for N = 2 and P, =100 mW. For the

other case, which is a plot of (8), injection power is constant at

100 mW and the locking gain increases with an increase in the

number of devices (broken line in Fig. 3) along with a decrease of

Q=X, (Fig. 2). The two cases thus illustrated show that, in general,

the locking range of a multiple-device oscillator increases as its

constituent devices are increased in number. A comparison of the

two cases indicates that, with the gain constant at a low level, a

larger deviation in the locking range is obtained as the devices are

increased in number. In this case, full advantage of the fall in

Q,,, with an increase in the number of devices is taken. When

injection power is constant, as the devices are increased in

number, the favorable effect of the corresponding decrease in

QeX, is diminished by the accompanying increase in the locking

gain. As a consequence, the deviation in the locking range with

an increase in the number of devices is not as large as it is in the

constant gain case. Thus, when the constituent devices of a

multiple-device oscillator are increased in number under a con-

stant locking-gain condition, the resulting rise in the locking

range is determined by an increase in the function Q~~. When

the number of devices is increased, with the primary objective of

increasing the locking gain, the dependence of the locking range

on the number of devices is determined by the function

(QCX,A:)-l.

IV. CONCLUSION

The analysis just presented shows that the Qex, of a multiple-

device oscillator falls towards a limiting value as the number of

devices is increased. This limiting value happens to be the quality

factor of an individual device. The decrease of Q.,, with an

increase in the number of devices can be fully utilized for

increasing the injection-locking range if the locking gain is kept

constant at the minimum possible level. Such a measure, of

course, will lead to an increasing demand on the injection power

as the devices are increased in number. In many applications, the

devices are increased in number to meet high-gain requirements.

In such cases, the improvement of the locking range with an

increase in the number of devices is comparatively less than what

may be achieved with the locking gain remaining constant at the

minimum possible level.
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,&tract —Equations are presented for computing the unloaded Q factor

of a microwave resonator embedded in an impedance-transforming loss-

Iess, reciprocal two-pox. Knowledge of the transformation properties of

the two-port is not required.
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Measurement of the resonator through an impedrmce transforming

two-port.

experimental evaluation of the Q factor of a typical

microwave resonator usually necessitates observing the resonator

through an unknown two-port, as shown in Fig. 1. In this figure,

the resonator is represented by a parallel resonant circuit, the

admittance of which is given approximately by

(1)

As a function of frequency, the locus of ~ is a vertical straight

line which crosses the real axis at GO. This occurs at resonant

frequency UO. The rate of change of susceptance with frequency

dB./du is nearly constant in the vicinity of resonance.

The unloaded Q factor of the resonator, in terms of circuit

elements, is given by [1]

aO dB,
Qo. —

2G0 % “
(2)

From the observation of admittance Y, as a function of frequency,

it would be possible to determine the quantities that are needed

in the right-hand side of (2) in order to compute QO. Unfor-

tunately, this admittance cannot be observed experimentally be-

cause Y, is transformed into an input impedance Z,

B~+A
z,=—

D~+C”
(3)

The complex numbers A to D are the elements of the chain

matrix for the impedance-transforming two-port, Impedance Z,

is accessible to the measuring device, typically a network analyzer.

Whereas the locus of the resonator admittance is a straight line

on the complex plane, the transformed impedance Z, (as well as

its inverse ‘~) describes a circle on the complex plane [2]. The

position and size of the circle depend on the constants A to D.

These constants are usually unknown. However, in comparison

with the rapid frequency variation of Y, (typical unloaded Q

factor values are between 1000 and 10 000), it is justified to

assume that A to D are independent of frequency. Furthermore,

the impedance transforming two-port is assumed to be lossless

and re~iprocal.

Solving (3) for v we have

–CZ, +A
~=

DZ, –B “
(4)

Using (4), it is possible to determine the quantities needed for the

evaluation of QO. First, the real part of Y, is found to be

Re(Z, )

‘0= IDZ, - B!’ “.
(5)

Next, the absolute value of the derivative of the admittance Y, is

computed, noting that only the imaginary part of Y, depends on

frequency

dZ,

d~ dB, du

dw – da = IDZ, –B12 “

Substituting (5) and (6) into (2) one obtains

dZi

‘0 z
Q.=

2Re(Z, ) “

(6)

(7)

This equation makes it possible to express the unloaded Q factor

in terms of impedance Zi, measured at the input side of the

impedance transforming two-port.

Similar derivation shows that the unloaded Q factor in Fig. 1

can also be expressed in terms of the input admittance ~ = lL/ZL
as follows:

(8)

Finally, in terms of the input reflection coefficient r,, the un-

loaded Q factor can be expressed as

dri

‘0 -z
Qo. —

l–p, y’
(9)

Equations (7)–(9) have an invariant behavior in the sense that

they are valid for the resonator embedded in an arbitrary two-lport.

The remarkable property of these equations is that knowledge of

the transformation constants A to D is not needed in order to

determine the unloaded Q factor. The only requirements on the

impedance transforming two-port are, first, to be insensitive to

small frequency variations and, second, to be lossless and re-

ciprocal.

Another convenient property of the above invariant expres-

sions is their relative insensitivity to the value of the observation

frequency. In other words, the value of 00, the unloaded reso-

nant frequency, does not have to be known very accurately.

When the input reflection coefficient r,(u) is observed, it is easy

to identify the loaded resonant frequency, i.e., the frequency at
which [r, 1is minimum. This loaded resonant frequency is slightly

different from the unloaded resonant frequency [3], but for high

values of QO, the difference is negligible when substituted in (7),

(8), or (9). Also, the derivatives appearing in these equations,

after being divided by the appropriate denominators, yield results

which are independent of frequency.

We found these invariant expressions to be very useful in

measurement of the unloaded Q factor with the aid of an

automated network analyzer. The derivatives of the measured

quantities have been evaluated numerically by the use of finite

differences, and the results were found to be consistent.
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