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Fig. 2. External-Q as a function of the number of devices.
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Fig. 3. Functions of the number of devices. (a) Locking range with constant
gain. (b) Locking range with constant injection power. (¢) Locking gain with
constant injection power.

devices is changed. From (4), (5), and (7), it can be easily seen
that

g, ( C (9)

-1
A =
S 7Cpy/A n*NC, )

when the locking gain is kept constant by proportionately in-
creasing P, as the devices are increased in number.

Fig. 3 shows the variation of the locking range with an increase
in the number of devices for a multiple-device oscillator of
F,=141,0,=1826V, C, =03 pF, C,=10pF, n =04, g, =3m
mho, and G, = 0.0lm mho. Two cases are shown. One obtained
from (9) for a constant locking gain of 9.96 dB, which is the
locking gain of the oscillator for N =2 and P, =100 mW. For the
other case, which is a plot of (8), injection power is constant at
100 mW and the locking gain increases with an increase in the
number of devices (broken line in Fig. 3) along with a decrease of
Q. (Fig. 2). The two cases thus illustrated show that, in general,
the locking range of a multiple-device oscillator increases as its
constituent devices are increased in number. A comparison of the
two cases indicates that, with the gain constant at a low level, a
larger deviation in the locking range is obtained as the devices are
increased in number. In this case, full advantage of the fall in
Q. With an increase in the number of devices is taken. When
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injection power is constant, as the devices are increased in
number, the favorable effect of the corresponding decrease in
Q.. is diminished by the accompanying increase in the locking
gain. As a consequence, the deviation in the locking range with
an increase in the number of devices is not as large as it is in the
constant gain case. Thus, when the constituent devices of a
multiple-device oscillator are increased in number under a con-
stant locking-gain condition, the resulting rise in the locking
range is determined by an increase in the function Q7}. When
the number of devices is increased, with the primary objective of
increasing the locking gain, the dependence of the locking range
on the number of devices is determined by the function

(QexeAD) L.

IV. CoNcLusioNn

The analysis just presented shows that the Q.,, of a multiple-
device oscillator falls towards a limiting value as the number of
devices is increased. This limiting value happens to be the quality
factor of an individual device. The decrease of Q.,, with an
increase in the number of devices can be fully utilized for
increasing the injection-locking range if the locking gain is kept
constant at the minimum possible level. Such a measure, of
course, will lead to an increasing demand on the injection power
as the devices are increased in number. In many applications, the
devices are increased in number to meet high-gain requirements.
In such cases, the improvement of the locking range with an
increase in the number of devices is comparatively less than what
may be achieved with the locking gain remaining constant at the
minimum possible level.
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Abstract —Equations are presented for computing the unloaded Q factor
of a microwave resonator embedded in an impedance-transforming loss-
less, reciprocal two-port. Knowledge of the transformation properties of
the two-port is not required.
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Fig. 1. Measurement of the resonator through an impedance transforming
two-port.

The experimental evaluation of the Q factor of a typical
microwave resonator usually necessitates observing the resonator
through an unknown two-port, as shown in Fig. 1. In this figure,
the resonator is represented by a parallel resonant circuit, the
admittance of which is given approximately by

Y, =G, dB’( ) 1)
=G+ j—(w—ay).
Fr=byTJ dw 0 (
As a function of frequency, the locus of Y, is a vertical straight
line which crosses the real axis at G,. This occurs at resonant
frequency w,. The rate of change of susceptance with frequency
dB, /dw is nearly constant in the vicinity of resonance.

The unloaded Q factor of the resonator, in terms of circuit

elements, is given by [1]

(04 dBr
o~ 2G, dw’

2

From the observation of admittance Y, as a function of frequency,
it would be possible to determine the quantities that are needed
in the right-hand side of (2) in order to compute Q,. Unfor-
tunately, this admittance cannot be observed experimentaily be-
cause Y, is transformed into an input impedance Z,

BY.+ 4

Z=—". 3
=Dy +cC (3)

The complex numbers 4 to D are the elements of the chain
matrix for the impedance-transforming two-port. Impedance Z,
is accessible to the measuring device, typically a network analyzer.

Whereas the locus of the resonator admittance is a straight line
on the complex plane, the transformed impedance Z, (as well as
its inverse Y,) describes a circle on the complex plane [2]. The
position and size of the circle depend on the constants 4 to D.
These constants are usually unknown. However, in comparison
with the rapid frequency variation of Y, (typical unloaded Q
factor values are between 1000 and 10000), it is justified to
assume that 4 to D are independent of frequency. Furthermore,
the impedance transforming two-port is assumed to be lossless
and reciprocal.

Solving (3) for Y, we have

-CZ +4
i 0
Using (4), it is possible to determine the quantities needed for the
evaluation of Q. First, the real part of Y, is found to be
Re(Z)
Go |DZ,— B> )

Next, the absolute value of the derivative of the admittance ¥, is
computed, noting that only the imaginary part of Y, depends on
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frequency
dz,|
dY,| dB do '
== (6)
dw| dw |DZ,— B|

Substituting (5) and (6) into (2) one obtains
iz,
de
" 2Re(Z)’

Wo

(7)

This equation makes it possible to express the unloaded Q factor
in terms of impedance Z;, measured at the input side of the
impedance transforming two-port.

Similar derivation shows that the unloaded Q factor in Fig. 1
can also be expressed in terms of the input admittance ¥, =1/Z,
as follows:

o)

ay,
dw
© 2Re(Y)’

wo

(®)

Finally, in terms of the input reflection coefficient T, the un-
loaded Q@ factor can be expressed as

Qo

dT,

Wo| ——

dw
- 9
QO{ 1_|E|2 ( )

Equations (7)-(9) have an invariant behavior in the sense that
they are valid for the resonator embedded in an arbitrary two-port.
The remarkable property of these equations is that knowledge of
the transformation constants 4 to D is not needed in order to
determine the unloaded Q factor. The only requirements on the
impedance transforming two-port are, first, to be insensitive to
small frequency variations and, second, to be lossless and re-
ciprocal.

Another convenient property of the above invariant expres-
sions is their relative insensitivity to the value of the observation
frequency. In other words, the value of «,, the unloaded reso-
nant -frequency, does not have to be known very accurately.
When the input reflection coefficient T, (w) is observed, it is easy
to identify the loaded resonant frequency, i.e., the frequency at
which |T|is minimum. This loaded resonant frequency is slightly
different from the unloaded resonant frequency [3], but for high
values of Q,, the difference is negligible when substituted in (7),
(8), or (9). Also, the derivatives appearing in these equations,
after being divided by the appropriate denominators, yield results
which are independent of frequency.

We found these invariant expressions to be very useful in
measurement of the unloaded Q factor with the aid of an
automated network analyzer. The derivatives of the measured
quantities have been evaluated numerically by the use of finite
differences, and the results were found to be consistent.
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